BigD565: Modeling Longitudinal Behavior Dynamics Among Extremist Users in Twitter Data
November 25, 2021
|
0:13:00
We use a dynamical systems perspective to analyze a collection of 2.4 million tweets known to originate from ISIS and ISIS-related users. From those users active over a long period of time (i.e., 2+ years), we derive sequences of behaviors and show that the top users cluster into behavioral classes, which naturally describe roles within the ISIS communication structure. We then correlate these classes to the retweet network of the top users showing the relationship between dynamic behavior and retweet network centrality. We use the underlying model to formulate informed hypotheses about the role each user plays. Finally, we show that this model can be used to detect outliers, i.e. accounts that are thought to be outside the ISIS organization but seem to be playing a key communications role and have dynamic behavior consistent with ISIS members.
BigD565: Modeling Longitudinal Behavior Dynamics Among Extremist Users in Twitter Data
Created:
November 25, 2021